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Preface

The rapid development of inorganic chemistry makes ever more challenging the task of 
providing a textbook that is contemporary and meets the needs of those who use it. We 
appreciate the constructive suggestions provided by students, faculty, and reviewers, and 
have adopted much of this advice, keeping in mind the constraints imposed by space and 
the scope of the book. The main emphasis in preparing this edition has been to bring it up 
to date while providing clarity and a variety of helpful features. 

New to the Fifth Edition:
•	 New	and	expanded	discussions	have	been	incorporated	in	many	chapters	to	reflect	

topics of contemporary interest: for example, frustrated Lewis pairs (Chapter 6), 
IUPAC guidelines defining hydrogen bonds (Chapter 6), multiple bonding 
between Group 13 elements (Chapter 8), graphyne (Chapter 8), developments in 
noble gas chemistry (Chapter 8), metal–organic frameworks (Chapter 9), pincer 
ligands (Chapter 9), the magnetochemical series (Chapter 10), photosensitizers 
(Chapter 11), polyyne and polyene carbon “wires” (Chapter 13), percent buried 
volume of ligands (Chapter 14), and introductions to C—H bond activation,  
Pd-catalyzed cross-coupling, and sigma-bond metathesis (Chapter 14).

•	 To	better	represent	the	shapes	of	molecular	orbitals,	we	are	providing	new	images,	
generated by molecular modeling software, for most of the orbitals presented in 
Chapter 5.

•	 In	a	similar	vein,	to	more	accurately	depict	the	shapes	of	many	molecules,	we	
have generated new images using CIF files from available crystal structure 
determinations. We hope that readers will find these images a significant 
improvement over the line drawings and ORTEP images that they replace.

•	 The	discussion	of	electronegativity	in	connection	with	the	VSEPR	model	in	
Chapter 3 has been expanded, and group electronegativity has been added.

•	 In	response	to	users’	requests,	the	projection	operator	approach	has	been	
added in the context of molecular orbitals of nonlinear molecules in Chapter 5. 
Chapter 8 includes more elaboration on Frost diagrams, and additional magnetic 
susceptibility content has been incorporated into Chapter 10.

•	 Chapter	6	has	been	reorganized	to	highlight	contemporary	aspects	of	acid–base	
chemistry and to include a broader range of measures of relative strengths of acids 
and bases.

•	 In	Chapter	9	numerous	new	images	have	been	added	to	provide	more	contemporary	
examples of the geometries of coordination complexes and coordination 
frameworks.

•	 The	Covalent	Bond	Classification	Method	and	MLX	plots	are	now	introduced	in	
Chapter 13.

•	 Approximately	15%	of	end-of-chapter	problems	are	new,	with	most	based	on	the	
recent inorganic literature. To further encourage in-depth engagement with the 
literature, more problems involving extracting and interpreting information from 
the literature have been included. The total number of problems is more than 580.
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  •   The values of physical constants inside the back cover have been revised to use 
the most recent values cited on the NIST Web site.  

  •   This edition expands the use of color to better highlight the art and chemistry 
within the text and to improve readability of tables.   

 The need to add new material to keep up with the pace of developments in inorganic chemistry 
while maintaining a reasonable length is challenging, and diff cult content decisions must 
be made. To permit space for increased narrative content while not signif cantly expanding 
the length of the book, Appendix B, containing tables of numerical data, has been placed 
online for free access. 

 We hope that the text will serve readers well. We will appreciate feedback and advice 
as we look ahead to edition 6.  

  SUPPLEMENTS 

  For the Instructor 

  ADVANCED CHEMISTRY WEBSITE       The new Advanced Chemistry Series 
supports upper-level course work with cutting-edge content delivered by experienced 
authors and innovative multimedia. We realize chemistry can be a difficult area of study 
and we want to do all we can to encourage not just completion of course work, but 
also the building of the foundations of remarkable scholarly and professional success. 
Pearson Education is honored to be partnering with chemistry instructors and future 
STEM majors. To learn more about Pearson’s Advanced Chemistry Series, explore 
other titles, or access materials to accompany this text and others in the series, please visit 
www.pearsonhighered.com/advchemistry.     

  For the Student 

  SOLUTIONS MANUAL (ISBN: 0321814134)   by Gary L. Miessler, Paul J. Fischer, 
and Donald A. Tarr. This manual includes fully worked-out solutions to all end-of-chapter 
problems in the text.     

http://www.pearsonhighered.com/advchemistry
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Chapter 1

Introduction to Inorganic 
Chemistry

1.1 What Is Inorganic Chemistry?
If organic chemistry is defined as the chemistry of hydrocarbon compounds and their 
derivatives, inorganic chemistry can be described broadly as the chemistry of “everything 
else.” This includes all the remaining elements in the periodic table, as well as carbon, 
which plays a major and growing role in inorganic chemistry. The large field of organo-
metallic chemistry bridges both areas by considering compounds containing metal–carbon 
bonds; it also includes catalysis of many organic reactions. Bioinorganic chemistry bridges 
biochemistry and inorganic chemistry and has an important focus on medical applications. 
Environmental chemistry includes the study of both inorganic and organic compounds. 
In short, the inorganic realm is vast, providing essentially limitless areas for investigation 
and potential practical applications.

1.2 Contrasts with Organic Chemistry
Some comparisons between organic and inorganic compounds are in order. In both areas, 
single, double, and triple covalent bonds are found (Figure 1.1); for inorganic compounds, 
these include direct metal—metal bonds and metal—carbon bonds. Although the maxi-
mum number of bonds between two carbon atoms is three, there are many compounds 
that contain quadruple bonds between metal atoms. In addition to the sigma and pi bonds 
common in organic chemistry, quadruply bonded metal atoms contain a delta (d) bond 
(Figure 1.2); a combination of one sigma bond, two pi bonds, and one delta bond makes 
up the quadruple bond. The delta bond is possible in these cases because the metal atoms 
have d orbitals to use in bonding, whereas carbon has only s and p orbitals energetically 
accessible for bonding.

Compounds with “fivefold” bonds between transition metals have been reported 
( Figure 1.3), accompanied by debate as to whether these bonds merit the designation 
“quintuple.”

In organic compounds, hydrogen is nearly always bonded to a single carbon. In inor-
ganic compounds, hydrogen is frequently encountered as a bridging atom between two or 
more other atoms. Bridging hydrogen atoms can also occur in metal cluster compounds, 
in which hydrogen atoms form bridges across edges or faces of polyhedra of metal atoms. 
Alkyl groups may also act as bridges in inorganic compounds, a function rarely encoun-
tered in organic chemistry except in reaction intermediates. Examples of terminal and 
bridging hydrogen atoms and alkyl groups in inorganic compounds are in Figure 1.4.

Some of the most striking differences between the chemistry of carbon and that of 
many other elements are in coordination number and geometry. Although carbon is usually 
limited to a maximum coordination number of four (a maximum of four atoms bonded 
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to carbon, as in    CH4),    numerous inorganic compounds have central atoms with coordina-
tion numbers of five, six, seven, and higher; the most common coordination geometry 
for transition metals is an octahedral arrangement around a central atom, as shown for 
   [TiF6]

3 -     ( Figure   1.5   ). Furthermore, inorganic compounds present coordination geometries 
different from those found for carbon. For example, although 4-coordinate carbon is nearly 
always tetrahedral, both tetrahedral and square-planar shapes occur for 4-coordinate com-
pounds of both metals and nonmetals. When metals are in the center, with anions or neu-
tral molecules ( ligands ) bonded to them (frequently through N, O, or S), these are called 
  coordination complexes ; when carbon is the element directly bonded to metal atoms or 
ions, they are also classified as  organometallic  complexes. 
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   The tetrahedral geometry usually found in 4-coordinate compounds of carbon also 
occurs in a different form in some inorganic molecules. Methane contains four hydrogens 
in a regular tetrahedron around carbon. Elemental phosphorus is tetratomic    (P4)    and tet-
rahedral, but with no central atom. Other elements can also form molecules in which outer 
atoms surround a central cavity; an example is boron, which forms numerous structures 
containing icosahedral    B12    units. Examples of some of the geometries found for inorganic 
compounds are in  Figure   1.5   . 

  Aromatic rings are common in organic chemistry, and aryl groups can also form 
sigma bonds to metals. However, aromatic rings can also bond to metals in a dramatically 
different fashion using their pi orbitals, as shown in  Figure   1.6    and in this book’s cover 
illustration. The result is a metal atom bonded above the center of the ring, almost as if 
suspended in space. In many cases, metal atoms are sandwiched between two aromatic 
rings. Multiple-decker sandwiches of metals and aromatic rings are also known. 

  Carbon plays an unusual role in a number of metal  cluster compounds  in which a 
carbon atom is at the center of a polyhedron of metal atoms. Examples of carbon-centered 
clusters with five, six, or more surrounding metals are known ( Figure   1.7   ). The striking role 
that carbon plays in these clusters has provided a challenge to theoretical inorganic chemists. 

 In addition, since the mid-1980s the chemistry of elemental carbon has flourished. 
This phenomenon began with the discovery of fullerenes, most notably the cluster    C60,    
dubbed “buckminsterfullerene” after the developer of the geodesic dome. Many other 
fullerenes (buckyballs) are now known and serve as cores of a variety of derivatives. In 
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addition, numerous other forms of carbon (for example, carbon nanotubes, nanoribbons, 
graphene, and carbon wires) have attracted much interest and show potential for applica-
tions in fields as diverse as nanoelectronics, body armor, and drug delivery. Figure 1.8 
provides examples of these newer forms of carbon.

The era of sharp dividing lines between subfields in chemistry has long been  obsolete. 
Many of the subjects in this book, such as acid–base chemistry and organometallic reac-
tions, are of vital interest to organic chemists. Other topics such as  oxidation–reduction 
reactions, spectra, and solubility relations interest analytical chemists. Subjects related 
to structure determination, spectra, conductivity, and theories of bonding appeal to 
physical chemists. Finally, the use of organometallic catalysts provides a connection to 
petroleum and polymer chemistry, and coordination compounds such as hemoglobin and 
 metal-containing enzymes provide a similar tie to biochemistry. Many inorganic chemists 
work with professionals in other fields to apply chemical discoveries to addressing modern 
challenges in medicine, energy, the environment, materials science, and other fields. In 
brief, modern inorganic chemistry is not a fragmented field of study, but has numerous 
interconnections with other fields of science, medicine, technology, and other disciplines.

The remainder of this chapter is devoted to a short history of the origins of inorganic 
chemistry and perspective on more recent developments, intended to provide a sense of 
connection to the past and to place some aspects of inorganic chemistry within the context 
of larger historical events. In later chapters, brief historical context is provided with the 
same intention.

1.3 The History of Inorganic Chemistry
Even before alchemy became a subject of study, many chemical reactions were used and 
their products applied to daily life. The first metals used were probably gold and copper, 
which can be found in the metallic state in nature. Copper can also be readily formed by 
the reduction of malachite—basic copper carbonate, Cu2(CO3)(OH)2—in charcoal fires. 
Silver, tin, antimony, and lead were also known as early as 3000 bce. Iron appeared in 

Figure 1.8 The Fullerene C60, 
a Fullerene Compound, a Carbon 
Nanotube, Graphene, a Carbon 
Peapod, and a Polyyne “Wire” 
Connecting Platinum Atoms.
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classical Greece and in other areas around the Mediterranean Sea by 1500 bce. At about 
the same time, colored glasses and ceramic glazes were introduced, largely composed of 
silicon dioxide    (SiO2,    the major component of sand) and other metallic oxides, which had 
been melted and allowed to cool to amorphous solids. 

 Alchemists were active in China, Egypt, and other centers of civilization early in the 
first centuries ce. Although much effort went into attempts to “transmute” base metals into 
gold, alchemists also described many other chemical reactions and operations. Distillation, 
sublimation, crystallization, and other techniques were developed and used in their stud-
ies. Because of the political and social changes of the time, alchemy shifted into the Arab 
world and later—about 1000 to 1500 ce—reappeared in Europe. Gunpowder was used in 
Chinese fireworks as early as 1150, and alchemy was also widespread in China and India 
at that time. Alchemists appeared in art, literature, and science until at least 1600, by which 
time chemistry was beginning to take shape as a science. Roger Bacon (1214–1294), recog-
nized as one of the first great experimental scientists, also wrote extensively about alchemy. 

 By the seventeenth century, the common strong acids—nitric, sulfuric, and hydro-
chloric—were known, and systematic descriptions of common salts and their reactions 
were being accumulated. As experimental techniques improved, the quantitative study of 
chemical reactions and the properties of gases became more common, atomic and molecu-
lar weights were determined more accurately, and the groundwork was laid for what later 
became the periodic table of the elements. By 1869, the concepts of atoms and molecules 
were well established, and it was possible for Mendeleev and Meyer to propose different 
forms of the periodic table.  Figure   1.9    illustrates Mendeleev’s original periodic table.  *   

   The chemical industry, which had been in existence since very early times in the form 
of factories for purifying salts and for smelting and refining metals, expanded as methods 
for preparing relatively pure materials became common. In 1896, Becquerel discovered 
radioactivity, and another area of study was opened. Studies of subatomic particles, spectra, 
and electricity led to the atomic theory of Bohr in 1913, which was soon modified by the 
quantum mechanics of Schrödinger and Heisenberg in 1926 and 1927. 

 Inorganic chemistry as a field of study was extremely important during the early years 
of the exploration and development of mineral resources. Qualitative analysis methods were 

 *  The original table was published in  Zeitschrift für Chemie ,  1869 ,  12 , 405. It can be found in English translation,
together with a page from the German article, at  web.lemoyne.edu/~giunta/mendeleev.html . See M. Laing, 
 J. Chem. Educ. ,  2008 ,  85 , 63 for illustrations of Mendeleev’s various versions of the periodic table, including his 
handwritten draft of the 1869 table. 
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 FIGURE 1.9   Mendeleev’s 1869 
Periodic Table.         Two years later, 
Mendeleev revised his table 
into a form similar to a modern 
short-form periodic table, with 
eight groups across.   
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developed to help identify minerals and, combined with quantitative  methods, to assess 
their purity and value. As the Industrial Revolution progressed, so did the chemical industry. 
By the early twentieth century, plants for the high volume production of ammonia, nitric 
acid, sulfuric acid, sodium hydroxide, and many other inorganic chemicals were common. 

 Early in the twentieth century, Werner and Jørgensen made considerable progress 
on understanding the coordination chemistry of transition metals and also discovered a 
number of organometallic compounds. Nevertheless, the popularity of inorganic chem-
istry as a field of study gradually declined during most of the first half of the century. 
The need for inorganic chemists to work on military projects during World War II rejuve-
nated interest in the field. As work was done on many projects (not least of which was the 
Manhattan  Project, in which scientists developed the fission bomb), new areas of research 
appeared, and new theories were proposed that prompted further experimental work. 
A great  expansion of inorganic chemistry began in the 1940s, sparked by the enthusiasm 
and ideas generated during World War II. 

 In the 1950s, an earlier method used to describe the spectra of metal ions surrounded 
by negatively charged ions in crystals ( crystal field theory )1   was extended by the use of 
molecular orbital theory2   to develop  ligand field theory  for use in coordination compounds, 
in which metal ions are surrounded by ions or molecules that donate electron pairs. This 
theory gave a more complete picture of the bonding in these compounds. The field devel-
oped rapidly as a result of this theoretical framework, availability of new instruments, and 
the generally reawakened interest in inorganic chemistry. 

 In 1955, Ziegler3   and Natta4   discovered organometallic compounds that could cata-
lyze the polymerization of ethylene at lower temperatures and pressures than the common 
industrial method at that time. In addition, the polyethylene formed was more likely to be 
made up of linear, rather than branched, molecules and, as a consequence, was stronger 
and more durable. Other catalysts were soon developed, and their study contributed to the 
rapid expansion of organometallic chemistry, still a rapidly growing area. 

 The study of biological materials containing metal atoms has also progressed rapidly. 
The development of new experimental methods allowed more thorough study of these 
compounds, and the related theoretical work provided connections to other areas of study. 
Attempts to make  model  compounds that have chemical and biological activity similar to 
the natural compounds have also led to many new synthetic techniques. Two of the many 
biological molecules that contain metals are in  Figure   1.10   . Although these molecules have 
very different roles, they share similar ring systems. 

  One current area that bridges organometallic chemistry and bioinorganic chemistry is 
the conversion of nitrogen to ammonia: 

   N2 + 3 H2 h  2 NH3   

 This reaction is one of the most important industrial processes, with over 100 million tons 
of ammonia produced annually worldwide, primarily for fertilizer. However, in spite of 
metal oxide catalysts introduced in the Haber–Bosch process in 1913, and improved since 
then, it is also a reaction that requires temperatures between 350 and 550 °C and from 
150–350 atm pressure and that still results in a yield of only 15 percent ammonia. Bacteria, 
however, manage to fix nitrogen (convert it to ammonia and then to nitrite and nitrate) at 
0.8 atm at room temperature in nodules on the roots of legumes. The nitrogenase enzyme 
that catalyzes this reaction is a complex iron–molybdenum–sulfur protein. The structure of 
its active sites has been determined by X-ray crystallography.5   A vigorous area of modern 
inorganic research is to design reactions that could be carried out on an industrial scale 
that model the reaction of nitrogenase to generate ammonia under mild conditions. It is 
estimated that as much as 1 percent of the world’s total energy consumption is currently 
used for the Haber–Bosch process. 

  Inorganic chemistry also has medical applications. Notable among these is the development 
of platinum-containing antitumor agents, the first of which was the  cis  isomer of    Pt(NH3)2Cl2,    
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cisplatin. First approved for clinical use approximately 30 years ago, cisplatin has served as the 
prototype for a variety of anticancer agents; for example,  satraplatin, the first orally available 
platinum anticancer drug to reach clinical trials.  *   These two  compounds are in  Figure   1.11   . 

     1.4  Perspective 
 The premier issue of the journal  Inorganic Chemistry   **   was published in February 1962. 
Much of the focus of that issue was on classic coordination chemistry, with more than half 
its research papers on synthesis of coordination complexes and their structures and proper-
ties. A few papers were on compounds of nonmetals and on organometallic chemistry, then 
a relatively new field; several were on thermodynamics or spectroscopy. All of these topics 
have developed considerably in the subsequent half-century, but much of the evolution of 
inorganic chemistry has been into realms unforeseen in 1962. 

  The 1962 publication of the first edition of F. A. Cotton and G. Wilkinson’s landmark 
text  Advanced Inorganic Chemistry6    provides a convenient reference point for the status 
of inorganic chemistry at that time. For example, this text cited only the two long-known 
forms of carbon, diamond and graphite, although it did mention “amorphous forms” attrib-
uted to microcrystalline graphite. It would not be until more than two decades later that 
carbon chemistry would explode with the seminal discovery of    C60    in 1985 by Kroto, 
Curl, Smalley, and colleagues,7   followed by other fullerenes, nanotubes, graphene, and 
other forms of carbon ( Figure   1.8   ) with the potential to have major impacts on electronics, 
materials science, medicine, and other realms of science and technology. 

 As another example, at the beginning of 1962 the elements helium through radon were 
commonly dubbed “inert” gases, believed to “form no chemically bound compounds” 
because of the stability of their electron configurations. Later that same year, Bartlett 
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 **  The authors of this issue of  Inorganic Chemistry  were a distinguished group, including f ve recipients of 
the Priestley Medal, the highest honor conferred by the American Chemical Society, and 1983 Nobel Laureate 
Henry Taube. 

 *  For reviews of modes of interaction of cisplatin and related drugs, see P. C. A. Bruijnincx, P. J. Sadler,  Curr. Opin. 
Chem. Bio .,  2008 ,  12 , 197 and F. Arnesano, G. Natile, Coord. Chem. Rev., 2009, 253, 2070. 
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reported the first chemical reactions of xenon with    PtF6   , launching the synthetic  chemistry 
of the now-renamed “noble” gas elements, especially xenon and krypton;8   numerous 
 compounds of these elements have been prepared in succeeding decades. 

 Numerous square planar platinum complexes were known by 1962; the chemistry of 
platinum compounds had been underway for more than a century. However, it was not known 
until Rosenberg’s work in the latter part of the 1960s that one of these,    cis@Pt(NH3)2Cl2    
(cisplatin,  Figure   1.11   ), had anticancer activity.9   Antitumor agents containing platinum and 
other transition metals have subsequently become major tools in treatment regimens for 
many types of cancer.10 

 That first issue of  Inorganic Chemistry  contained only 188 pages, and the journal was 
published quarterly, exclusively in hardcopy. Researchers from only four countries were 
represented, more than 90 percent from the United States, the others from Europe.   Inorganic 
Chemistry  now averages approximately 550 pages per issue, is published 24 times annually, 
and publishes (electronically) research conducted broadly around the globe. The growth 
and diversity of research published in  Inorganic Chemistry  has been paralleled in a wide 
variety of other journals that publish articles on inorganic and related fields. 

 In the preface to the first edition of  Advanced Inorganic Chemistry , Cotton and 
Wilkinson stated, “in recent years, inorganic chemistry has experienced an impressive 
renaissance.” This renaissance shows no sign of diminishing. 

 With this brief survey of the marvelously complex field of inorganic chemistry, we 
now turn to the details in the remainder of this book. The topics included provide a broad 
introduction to the field. However, even a cursory examination of a chemical library or one 
of the many inorganic journals shows some important aspects of inorganic chemistry that 
must be omitted in a textbook of moderate length. The references cited in this text suggest 
resources for further study, including historical sources, texts, and reference works that 
provide useful additional material.   
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Chapter 2

Atomic Structure

Understanding the structure of the atom has been a fundamental challenge for  centuries. 
It is possible to gain a practical understanding of atomic and  molecular structure using 
only a moderate amount of mathematics rather than the mathematical sophistication of 
quantum mechanics. This chapter introduces the fundamentals needed to explain atomic 
structure in qualitative and semiquantitative terms.

2.1 Historical Development of Atomic Theory
Although the Greek philosophers Democritus (460–370 bce) and Epicurus (341–270 bce) 
 presented views of nature that included atoms, many centuries passed before experimental 
studies could establish the quantitative relationships needed for a coherent atomic  theory. 
In 1808, John Dalton published A New System of Chemical Philosophy,1 in which he 
 proposed that

… the ultimate particles of all homogeneous bodies are perfectly alike in weight, 
figure, etc. In other words, every particle of water is like every other particle of 
water; every particle of hydrogen is like every other particle of hydrogen, etc.2

and that atoms combine in simple numerical ratios to form compounds. The  terminology 
he used has since been modified, but he clearly presented the concepts of atoms and 
 molecules, and made quantitative observations of the masses and volumes of substances 
as they combined to form new substances. For example, in describing the reaction between 
the gases hydrogen and oxygen to form water Dalton said that

When two measures of hydrogen and one of oxygen gas are mixed, and fired 
by the electric spark, the whole is converted into steam, and if the pressure 
be great, this steam becomes water. It is most probable then that there is the 
same number of particles in two measures of hydrogen as in one of oxygen.3

Because Dalton was not aware of the diatomic nature of the molecules H2 and O2, which 
he assumed to be monatomic H and O, he did not find the correct formula of water, 
and therefore his surmise about the relative numbers of particles in “measures” of the 
gases is inconsistent with the modern concept of the mole and the chemical equation 
2H2 + O2 S 2H2O.

Only a few years later, Avogadro used data from Gay-Lussac to argue that equal 
 volumes of gas at equal temperatures and pressures contain the same number of mole-
cules, but uncertainties about the nature of sulfur, phosphorus, arsenic, and mercury vapors 
delayed acceptance of this idea. Widespread confusion about atomic weights and molecular 
formulas contributed to the delay; in 1861, Kekulé gave 19 different possible formulas for 
acetic acid!4 In the 1850s, Cannizzaro revived the argument of Avogadro and argued that 
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